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Abstract

This paper presents an on-line unsupervised learning mechanism for unlabeled data that are polluted by noise. Using a similarity threshold-

based and a local error-based insertion criterion, the system is able to grow incrementally and to accommodate input patterns of on-line non-

stationary data distribution. A definition of a utility parameter, the error-radius, allows this system to learn the number of nodes needed to

solve a task. The use of a new technique for removing nodes in low probability density regions can separate clusters with low-density

overlaps and dynamically eliminate noise in the input data. The design of two-layer neural network enables this system to represent the

topological structure of unsupervised on-line data, report the reasonable number of clusters, and give typical prototype patterns of every

cluster without prior conditions such as a suitable number of nodes or a good initial codebook.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

One objective of unsupervised learning is construction of

decision boundaries based on unlabeled training data.

Unsupervised classification is also known as data clustering

and is defined as the problem of finding homogeneous

groups of data points in a given multidimensional data set

(Jain & Dubes, 1988). Each of these groups is called a

cluster and defined as a region in which the density of

objects is locally higher than in other regions.

Clustering algorithms are classifiable into hierarchical

clustering, partitional clustering, fuzzy clustering, nearest-

neighbor clustering, artificial neural networks for clustering,

etc. (Murty, Jain, & Flynn, 1999). Hierarchical clustering

algorithms such as single-link (Sneath & Sokal, 1973),
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complete-link (King, 1967), and CURE (Guha, Rastogi, &

Shim, 1998) usually find satisfiable clustering results but

suffer from computational overload and the requirement for

much memory space (Murty et al., 1999). Hierarchical

clustering algorithms are therefore unsuitable for large data

sets or on-line data. BIRCH is an extremely efficient

hierarchical clustering algorithm (Zhang, Ramakrishnan, &

Livny, 1996), but is properly applicable to data sets

consisting only of isotropic clusters: a two-dimensional

(2D) circle, or a three-dimensional (3D) sphericity, etc.

Specifically, chain-like and concentric clusters are difficult

to identify using BIRCH (Guha et al., 1998; Oyang, Chen, &

Yang, 2001).

Most partitional clustering algorithms run in linear time

and work on large data sets (Lin & Chen, 2002). The

k-means algorithm, a conventionally used partitional

clustering algorithms, suffers from deficiencies such as

dependence on initial starting conditions (Lozano, Pena, &

Larranaga, 1999) and a tendency to result in local minima.

Likas, Vlassis, and Verbeek (2003) proposed a global

k-means algorithm, an incremental approach to clustering

that dynamically adds one cluster center at a time through a
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deterministic global search consisting of N (the data set size)

execution of the k-means algorithm from suitable initial

positions. Compared to traditional k-means, this algorithm

can obtain equivalent or better results, but it suffers from

high computation load. The enhanced LBG algorithm

proposed by Patane and Russo (2001) defines one

parameter-utility of a codeword-to overcome the drawback

of LBG algorithm: the dependence on initial starting

condition. The main difficulties of such methods are how

to determine the number of clusters k in advance and the

limited applicability to data sets consisting only of isotropic

clusters.

Some clustering methods combine features of hierarch-

ical and partitional clustering algorithms, partitioning an

input data set into sub-clusters and then constructing a

hierarchical structure based on these sub-clusters (Murty &

Krishna, 1981). Representing a sub-cluster as only one

point, however, renders the multilevel algorithm inapplic-

able to some cases, especially when the dimension of a sub-

cluster is on the same order as the corresponding final

cluster (Lin & Chen, 2002).

Another possible objective of unsupervised learning can

be described as topology learning: given a high-dimen-

sional data distribution, find a topological structure that

closely reflects the topology of the data distribution. Self-

organizing map (SOM) models (Willshaw & von der

Malsburg, 1976; Kohonen, 1982) generate mapping from

high-dimensional signal space to lower-dimensional

topological structure. The predetermined structure and

size of Kohonen’s model imply limitations on resulting

mapping (Martinetz & Schulten, 1994). Methods that

identify and repair topological defects are costly

(Villmann, Der, Hermann, & Martinetz, 1997). A posterior

choice of class labels for prototypes of the (unsupervised)

SOM causes further problems: class borders are not taken

into account in SOM and several classes may share

common prototypes (Villmann, Schleif, & Hammer,

2003). As an alternative, a combination of competitive

Hebbian learning (CHL) (Martinetz, 1993) and neural gas

(NG) (Martinetz, Berkovich, & Schulten, 1993) is

effective in constructing topological structure (Martinetz

& Schulten, 1994). For each input signal, CHL connects

the two closest centers by an edge, and NG adapts k

nearest centers whereby k is decreasing from a large initial

value to a small final value. Problems arise in practical

application: it requires an a priori decision about network

size; it must rank all nodes in each adaptation step;

furthermore, once adaptation strength has decayed, the use

of adaptation parameters ‘freezes’ the network, which

thereby becomes unable to react to subsequent changes in

signal distribution. Two nearly identical algorithms are

proposed to solve such problems: growing neural gas

(GNG) (Fritzke, 1995) and dynamic cell structures

(Bruske & Sommer, 1995). Nodes in the network compete

for determining the node with the highest similarity to the

input pattern. Local error measures are gathered during
the learning process to determine where to insert new

nodes, and new node is inserted near the node with the

highest accumulated error. The major drawbacks of these

methods are their permanent increase in the number of

nodes and drift of the centers to capture the input

probability density (Hamker, 2001). Thresholds such as a

maximum number of nodes predetermined by the user, or

an insertion criterion depending on overall error or on

quantization error are not appropriate, because appropriate

figures for these criteria are unknown a priori.

For the much more difficult problems of non-stationary

data distributions, on-line learning or life-long learning

tasks, the above-mentioned methods are not suitable. The

fundamental issue for such problems is how a learning

system can adapt to new information without corrupting or

forgetting previously learned information—the Stability-

Plasticity Dilemma (Carpenter & Grossberg, 1988). Using a

utility-based removal criterion, GNG-U (Fritzke, 1997)

deletes nodes that are located in regions of low input

probability density. GNG-U uses a network of limited size

to track the distribution in each moment, and the target of

GNG-U is to represent the actual state. Life-long learning

(Hamker, 2001) emphasizes learning through the entire

lifespan of a system. For life-long learning, the ‘dead nodes’

removed by GNG-U can be interpreted as a kind of memory

that may be useful again, for example, when the probability

distribution takes on a previously held shape. Therefore,

those ‘dead nodes’ preserve the knowledge of previous

situations for future decisions and play a major role in life-

long learning. The GNG-U serves to follow a non-stationary

input distribution, but the previously learned prototype

patterns are destroyed. For that reason, GNG-U is unsuitable

for life-long learning tasks.

Lim and Harrison (1997) propose a hybrid network that

combines advantages of Fuzzy ARTMAP and probabilistic

neural networks for incremental learning. Hamker (2001)

proposes a life-long learning cell structure (LLCS) that is

able to learn the number of nodes needed to solve a current

task and to dynamically adapt the learning rate of each node

separately. Both methods work for supervised on-line

learning or life-long learning tasks, but how to process

unsupervised learning remains controversial.

The goal of the present study is to design an autonomous

learning system for unsupervised classification and top-

ology representation tasks. The objective is to develop a

network that operates autonomously, on-line or life-long,

and in a non-stationary environment. The network grows

incrementally, learns the number of nodes needed to solve a

current task, learns the number of clusters, accommodates

input patterns of on-line non-stationary data distribution,

and dynamically eliminates noise in input data.

Below, we describe the proposed algorithm, and then use

artificial and real-world data sets to illustrate the learning

process and observe details. A comparison with typical

incremental networks, GNG and GNG-U, elucidates the

learning behavior.
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2. Proposed method

For unsupervised on-line learning tasks, we separate

unlabeled non-stationary input data into different classes

without prior knowledge such as how many classes exist.

We also intend to learn input data topologies. Briefly, the

targets of the proposed algorithm are:

† To process on-line or life-long learning non-stationary

data.

† Using no prior conditions such as a suitable number of

nodes or a good initial codebook or knowing how many

classes exist, to conduct unsupervised learning, report a

suitable number of classes and represent the topological

structure of input probability density.

† To separate classes with low-density overlap and detect

the main structure of clusters that are polluted by noise.

To realize these targets, we emphasize the key aspects of

local representation, insertion of new nodes, similarity

threshold, adaptive learning rate, and deletion of low

probability density nodes.
2.1. Overview of the proposed method

In this study, we adopt a two-layer neural network

structure to realize our targets. The first layer is used to

generate a topological structure of input pattern. We obtain

some nodes to represent the probability density of an input

pattern when we finish the first-layer learning. For the

second layer, we use nodes identified in the first layer as the

input data set. We report the number of clusters and give

typical prototype nodes of every cluster when we finish the

second-layer learning.

For unsupervised classification task, we must determine

if an input sample belongs to previously learned clusters or

to a new cluster. Suppose we say that two samples belong to

the same cluster if the Euclidean distance between them is

less than threshold distance T. If T is too large, all samples

will be assigned to one cluster. If T is too small, each sample

will form an isolated, singleton cluster. To obtain ‘natural’

clusters, T must be greater than the typical within-cluster

distance and less than the typical between-cluster distance

(Duda, Hart & Stork, 2001).

For both layers, we must calculate the threshold

distance T. In the first layer, we set the input signal as a

new node (the first node of a new cluster) when the

distance between the signal and the nearest node (or the

second nearest node) is greater than a threshold T that is

permanently adapted to the present situation. In the second

layer, we calculate the typical within-cluster distances and

typical between-cluster distances based on those nodes

generated in the first layer, then give a constant threshold

distance Tc according to the within-cluster distances and

between-cluster distances.
To represent the topological structure, in on-line or

life-long learning tasks, growth is an important feature

for decreasing task error and adapting to changing

environments while preserving old prototype patterns.

Therefore, the insertion of new nodes is a very useful

contribution to plasticity of the Stability-Plasticity

Dilemma without interfering with previous learning

(stability). Insertion must be stopped to prohibit a

permanent increase in the number of nodes and to

avoid overfitting. For that reason, we must decide when

and how to insert a new node within one cluster and

when insertion is to be stopped.

For within-cluster insertion, we adopt a scheme used by

some incremental networks (such as GNG (Fritzke, 1995),

GCS (Fritzke, 1994)) to insert a node between node q with

maximum accumulated error and node f, which is among the

neighbors of q with maximum accumulated error. Current

incremental networks (GNG, GCS) have no ability to learn

whether further insertion of a node is useful or not. Node

insertion leads to catastrophic allocation of new nodes.

Here, we suggest a strategy: when a new node is inserted,

we evaluate insertion by a utility parameter, the error-

radius, to judge if insertion is successful. This evaluation

ensures that the insertion of a new node leads to decreasing

error and controls the increment of nodes, eventually

stabilizing the number of nodes.

We adopt the competitive Hebbian rule proposed by

Martinetz in topology representing networks (TRN) to build

connections between neural nodes (Martinetz & Schulten,

1994). The competitive Hebbian rule can be described as:

for each input signal, connect the two closest nodes

(measured by Euclidean distance) by an edge. It is proved

that each edge of the generated graph belongs to the

Delaunay triangulation corresponding to the given set of

reference vectors, and that the graph is optimally topology-

preserving in a very general sense. In on-line or life-long

learning, the nodes change their locations slowly but

permanently. Therefore, nodes that are neighboring at an

early stage might not be neighboring at a more advanced

stage. It thereby becomes necessary to remove connections

that have not been recently refreshed.

In general, overlaps exist among clusters. To detect the

number of clusters precisely, we assume that input data are

separable: the probability density in the centric part of

every cluster is higher than the density in intermediate

parts between clusters; and overlaps between clusters have

low probability density. We separate clusters by removing

those nodes whose position is in a region with very low

probability density. To realize this, Fritzke (1994) designed

an estimation to find the low probability-density region; if

the density is below threshold h, the node is removed.

Here, we propose a novel strategy: if the number of input

signals generated so far is an integer multiple of a

parameter, remove those nodes with only one or no

topological neighbor. We infer that, if the node has only

one or no neighbor, during that period, the accumulated
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error of this node has a very low probability of becoming

maximum and the insertion of new nodes near this node is

difficult: the probability density of the region containing

the node is very low. However, for one-dimensional input

data, the nodes form a chain, the above criterion will

remove the boundary nodes repeatedly. In addition, if the

input data contain little noise, it is not good to delete those

nodes having only one neighbor. Thus, we use another

parameter, the local accumulated number of signals of the

candidate-deleting node, to control the deletion behavior. If

this parameter is greater than an adaptive threshold, i.e. if

the node is the winner for numerous signals, the node will

not be deleted because the node does not lie in a low-

density area. This strategy works well for removing nodes

in low-density regions without added computation load. In

addition, the use of this technique periodically removes

nodes caused by noise because the probability density of

noise is very low.

If two nodes can be linked with a series of edges, a path

exists between the two nodes. Martinetz and Schulten

(1994) prove some theorems and reach the conclusion that

the competitive Hebbian rule is suitable for forming a path

preserving representations of a given manifold. If the

number of nodes is sufficient for obtaining a dense

distribution, the connectivity structure of the network

corresponds to the induced Delaunay triangulation that

defines both a perfectly topology-preserving map and a

path-preserving representation. In TRN, neural gas (NG) is

used to obtain weight vectors Wi2M, iZ1,.,N,M is the

given manifold. The NG is an efficient vector quantization

procedure. It creates a homogeneous distribution of the

weight vectors Wi on M. After learning, the probability

distribution of the weight vectors of the NG is

rðWiÞwPðWiÞ
a (1)

With the magnification factor aZDeff =ðDeff C2Þ, the

intrinsic data dimension is Deff (Villmann, 2000). Therefore,

with the path-preserving representation, the competitive

Hebbian rule allows the determination of which parts of a

given pattern manifold are separated and form different

clusters. In the proposed algorithm, we adopt a scheme like

neural gas with only nearest neighbor learning for the

weight vector adaptation; the competitive Hebbian rule is

used to determine topology neighbors. Therefore, we can

use the conclusions of TRN to identify clusters, i.e. if two

nodes are linked with one path, we say the two nodes belong

to one cluster.
2.2. Complete algorithm

Using the analysis presented in Section 2.1, we give the

complete algorithm here. The same algorithm is used to

train both the first layer and the second layer. The difference

between the two layers is that the input data set of the

second layer is the nodes generated by the first layer.
A constant similarity threshold is used in the second layer

instead of the adaptive similarity threshold used in the first

layer.

Notations to be used in the algorithm

A node set, used to store nodes

NA number of nodes in A

C connection set (or edge set), used to store

connections (edges) between nodes

NC number of edges in C

Wi n-dimension weight vector of node i

Ei local accumulated error of node i; it is updated when

node i is the nearest node (winner) from the input

signal

Mi local accumulated number of signals of node i; the

number is updated when node i is the winner

Ri inherited error-radius of node i; the error-radius of

node i is defined by the mean of accumulated error,

Ei/Mi. Ri serves as memory for the error-radius of

node i at the moment of insertion. It is updated at

each insertion, but only for affected nodes

Ci cluster label. This variable is used to judge which

cluster node i belongs to.

Q number of clusters.

Ti similarity threshold. If the distance between an

input pattern and node i is larger than Ti, the input

pattern is a new node.

Ni set of direct topological neighbors of node i.

Li number of topological neighbors of node i.

age(i,j) age of the edge that connects node i and node j.

path given a series of nodes xi2A, iZ1,2,.,n, makes (i,

x1),(x1,x2),.,(xnK1,xn),(xn,j)2C. We say that a

‘path’ exists between node i and node j.
Algorithm 2.1: basic algorithm

(1) Initialize node set A to contain two nodes, c1 and c2:

A Z fc1; c2g (2)

with weight vectors chosen randomly from the input

pattern. Initialize connection set C, C3A!A, to the

empty set

C Z F (3)

(2) Input new pattern x2Rn.

(3) Search node set A to determine the winner s1, and

second-nearest node (second winner) s2 by

s1 Z arg min
c2A

kxKWck (4)

s2 Z arg min
c2Anfs1g

jxKWcjj (5)

If the respective distances separating x and s1 or s2 are

greater than similarity thresholds Ts1
or Ts2

, the input
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signal is a new node; add the new node to A and go to

step (2) to process the next signal, i.e. if kxKWs1
kO

Ts1
or kxKWs2

kOTs2
, then AZAgr and WrZx

(4) If a connection between s1 and s2 does not exist

already, create it and add it to connection set C.

C Z Cg ðs1; s2Þ (6)

Set the age of the connection between s1 and s2 to zero

ageðs1;s2Þ
Z 0 (7)

(5) Increase the age of all edges emanating from s1.

ageðs1;iÞ
Z ageðs1;iÞ

C1ðci2Ns1
Þ (8)

(6) Add the Euclidian distance between the input signal

and the winner to local accumulated error Es1

Es1
Z Es1

CkxKWs1
k: (9)

(7) Add 1 to the local accumulated number of signals Ms1
:

Ms1
Z Ms1

C1: (10)

(8) Adapt the weight vectors of the winner and its direct

topological neighbors by fraction 31(t) and 32(t) of the

total distance to the input signal

DWs1
Z 31ðtÞðxKWs1

Þ (11)

DWi Z 32ðtÞðxKWiÞ ðci2Ns1
Þ (12)

Here, we call 31(t) the learning rate of the winner, and

32(t) the learning rate of the neighbor.

(9) Remove edges with an age greater than a predefined

threshold agedead, i.e. if (i,j)2C, and age(i,j)O
agedead(ci,j2A), then CZC\{(i,j)}.

(10) If the number of input signals generated so far is an

integer multiple of parameter l, insert a new node and

remove nodes in low probability density as follows:

† Determine node q with maximum accumulated

error E:

q Z arg max
c2A

Ec (13)

† Determine, among the neighbors of q, node f with

maximum accumulated error:

f Z arg max
c2Nq

Ec (14)

† Add new node r to the network and interpolate its

weight vector from q and f:

A Z Ag frg; Wr Z ðWq CWf Þ=2:0 (15)

† Interpolate accumulated error Er, accumulated

number of signals Mr, and the inherited error-

radius Rr from Eq, Ef, Mq, Mf, and Rq, Rf by:

Er Z a1ðEq CEf Þ (16)

Mr Z a2ðMq CMf Þ (17)
Rr Z a3ðRq CRfÞ (18)

† Decrease accumulated error variables of q and f by

fraction b

Eq Z bEq; Ef Z bEf (19)

† Decrease the accumulated number of signal

variables of q and f by fraction g

Mq Z gMq; Mf Z gMf (20)

† Judge whether or not insertion is successful. If the

error-radius is larger than the inherited error-radius

Ri (ci2{q,r,f}), in other words, if insertion cannot

decrease the mean error of this local area, insertion

is not successful; else, update the inherited error-

radius. I.e. if Ei/MiORi (ci2{q,r,f}), insertion is

not successful, new node r is removed from set A,

and all parameters are restored; else, RqZEq/Mq,

RfZEf/Mf, and RrZEr/Mr.

† If insertion is successful, insert edges connecting

new node r with nodes q and f, and remove the

original edge between q and f.

C Z Cg fðr; qÞ; ðr; f Þg (21)

C Z Cnfðq; f Þg (22)

† For all nodes in A, search for nodes having only

one neighbor, then compare the accumulated

number of signals of these nodes with the average

accumulated number of all nodes. If a node has

only one neighbor and the accumulated number of

signals is less than an adaptive threshold, remove it

from the node set, i.e. if LiZ1 (ci2A) and

Mi!c
PNA

jZ1

Mj=NA, then AZA\{i}. Here, c is

determined by the user and 1RcO0. If much

noise exists in the input data, c will be larger and

vice versa.

† For all nodes in A, search for isolated nodes, then

delete them, i.e. if LiZ0 (ci2A), then AZA\{i}.

(11) After a long constant time period LT, report the

number of clusters, output all nodes belonging to

different clusters. Use the following method to classify

nodes into different classes:

† Initialize all nodes as unclassified.

† Loop: Randomly choose one unclassified node i

from node set A. Mark node i as classified and label

it as class Ci.

† Search A to find all unclassified nodes connected to

node i with a ‘path.’ Mark these nodes as classified

and label them as the same class as node i (Ci).

† If unclassified nodes exist, go to Loop to continue

the classification process until all nodes are

classified.
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(12) Go to step (2) to continue the on-line unsupervised

learning process.
2.3. Parameter discussion

We determine parameters in Algorithm 2.1 as follows.

2.3.1. Similarity threshold Ti of node i

As discussed in Section 2.1, similarity threshold Ti is a

very important variable. In step (3) of Algorithm 2.1, the

threshold is used to judge if the input signal belongs to

previously learned clusters or not.

For the first layer, we have no prior knowledge of input

data and therefore adopt an adaptive threshold scheme. For

every node i, the threshold Ti is adopted independently.

First, we assume that all data come from the same cluster;

thus, the initial threshold of every node will be CN. After a

period of learning, the input pattern is separated into

different small groups; each group comprises one node and

its direct topological neighbors. Some of these groups can

be linked to form a big group; the big groups are then

separated from each other. We designate such big groups as

clusters. The similarity threshold must be greater than

within-cluster distances and less than between-cluster

distances. Based on this idea, we calculate similarity

threshold Ti of node i with the following algorithm.

Algorithm 2.2: Calculation of similarity threshold T for the

first layer.

(1) Initialize the similarity threshold of node i to CN when

node i is generated as a new node.

(2) When node i is a winner or second winner, update

similarity threshold Ti by

† If the node has direct topological neighbors (LiO0),

Ti is updated as the maximum distance between

node i and all of its neighbors.

Ti Z max
c2Ni

kWiKWck (23)

† If node i has no neighbors (LiZ0), Ti is updated as

the minimum distance of node i and all other nodes

in A.

Ti Z min
c2Anfig

kWiKWck (24)

For the second layer, the input data set contains the

results of the first layer. After learning of the first layer, we

obtain coarse clustering results and a topological structure.

Using this knowledge, we calculate the within-cluster

distance dw as

dw Z
1

NC

X

ði;jÞ2C

kWiKWjk; (25)

and calculate the between-cluster distance db(Ci,Cj) of

clusters Ci and Cj as
dbðCi;CjÞ Z max
i2Ci ;j2Cj

kWiKWjk (26)

That is, the within-cluster distance is the mean distance

of all edges, and the between-cluster distance is the

minimum distance between two clusters. With dw and db,

we can give a constant threshold Tc for all nodes.

The threshold must be greater than the within-cluster

distance and less than the between-cluster distances.

Influenced by overlap or noise, some between-cluster

distances are less than within-cluster distances, so we use

the following algorithm to calculate the threshold distance

Tc for the second layer.

Algorithm 2.3: Calculation of similarity threshold T for the

second layer.

(1) Set Tc as the minimum between-cluster distance.

Tc Z dbðCi1
;Cj1

Þ Z min
k;lZ1;.;Q;ksl

dbðCk;ClÞ (27)

(2) If Tc is less than within-cluster distance dw, set Tc as the

next minimum between-cluster distance.

Tc Z dbðCi2
;Cj2

Þ Z min
k;lZ1;.;Q;ksl;ksi1;lsj1

dbðCk;ClÞ (28)

(3) Go to step (2) to update Tc until Tc is greater than dw.
2.3.2. Adaptive learning rate

In step (8) of Algorithm 2.1, the learning rate 3(t)

determines the extent to which the winner and the neighbors

of the winner are adapted towards the input signal.

A constant learning rate is adopted by GNG and GNG-U,

i.e. 3(t)Zc0, 1Rc0O0. With this scheme, each reference

vector Wi represents an exponentially decaying average of

those input signals for which the node i has been a winner.

However, the most recent input signal always determines a

fraction c0 of the current Wi. Even after numerous iterations,

the current input signal can cause a considerable change in

the reference vector of the winner.

Ritter et al. (1991) proposed a decaying adaptation

learning rate scheme. This scheme was adopted in the neural

gas (NG) network (Martinetz et al., 1993). The exponential

decay scheme is

3ðtÞ Z 3ið3f =3iÞ
t=tmax (29)

wherein 3i and 3f are the initial and final values of the

learning rate and tmax is the total number of adaptation steps.

This method is less susceptible to poor initialization. For

many data distributions, it gives a lower mean-square error.

However, we must choose parameter 3i and 3f by ‘trial and

error’ (Martinetz et al., 1993). For on-line or life-long

learning tasks, the total number of adaptation steps tmax is

not available.

In this study, we adopt a scheme like k-means to adapt

the learning rate over time by
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31ðtÞ Z
1

t
; 32ðtÞ Z

1

100t
(30)
Here, time parameter t represents the number of input

signals for which this particular node has been a winner thus

far, i.e. tZMi. This algorithm is known as k-means. The

node is always the exact arithmetic mean of the input signals

it has been a winner for.

This scheme is adopted because we are hopeful of

making the position of the node more stable by decreasing

the learning rate when the node becomes a winner for more

and more input patterns. After the network size becomes

stable, the network is fine tuned by stochastic approxi-

mation (Wasan, 1969). This approximation denotes a

number of adaptation steps with a strength 3(t) decaying

slowly, but not too slowly, i.e.
PN

tZ1

3ðtÞZN, and
PN

tZ1

32ðtÞ!N. The harmonic series, Eq. (30), satisfies the

conditions.
2.3.3. Decreasing rate of accumulated variables E (error)

and M (number of signals)

When insertion between node q and f happens, how do

we decrease accumulated error Eq, Ef and the accumulated

number of signals Mq, Mf? How do we allocate the

accumulated error Er and the accumulated number of

signals Mr to new node r?

In Fig. 1, the Voronoi regions of node q and f before

insertion are shown at left, and Voronoi regions belonging

to q, f, and new node r after insertion are shown at right.

We assume that signals in these Voronoi regions are

distributed uniformly. Comparing left to right reveals that

one-fourth of the accumulated number of signals of q and f

are reallocated to new node r, and that three-fourths of the

accumulated number of signals remaining for q and f. For

accumulated error, it is reasonable to assume that error

attributable to V1 is double the error caused by V2 for node

q. Consequently, after insertion, the accumulated error of q

and f is two-thirds of the accumulated error before

insertion. We also assume that the error to r caused by

V1 is equal to the error to q attributable to V2.

Consequently, the reallocated accumulated error for r is

one-sixth of Eq and Ef. Based on the above analysis,
Fig. 1. Voronoi regions of nodes (Left, before insertion; Right, after

insertion).
the rate of decrease becomes: a1Z1/6, a2Z1/4, a3Z1/4,

bZ2/3, and gZ3/4.

The above analysis is based on the supposition that

signals are uniformly distributed over Voronoi regions. This

supposition might be untenable for some tasks. For that

reason, the above parameter set is not the optimal choice for

such tasks. Fortunately, the choice of these parameters is not

sensitive. In Section 3, we use different parameter sets to

test an artificial data set and achieve nearly identical results.

With the same parameter set, the system also works well for

different real-world data experiments such as face recog-

nition and vector quantization for different images.
3. Experiment
3.1. Artificial data set

We conducted our experiment on the data set shown in

Fig. 2. An artificial 2-D data set is used to take advantage of

its intuitive manipulation, visualization, and resulting

insight into system behavior. The data set is separated into

five parts: A, B, C, D, and E. Data sets A and B satisfy 2-D

Gaussian distribution. The C and D data sets are a famous

single-link example. Finally, E is sinusoidal and separated

into E1, E2, and E3 to clarify incremental properties. We

also add random noise (10% of useful data) to the data set to

simulate real-world data. As shown in Fig. 2, overlaps exist

among clusters; noise is distributed over the entire data set.

As stated in (Guha et al., 1998), neither BIRCH nor single-

link clustering can correctly partition such a data set. The

CSM algorithm proposed by Lin and Chen (2002) partially

solves this problem, but it cannot eliminate noise, and noise

forms new clusters.

This experiment compares our proposed method with

typical incremental network GNG (Fritzke, 1995) and

GNG-U (Fritzke, 1997) to demonstrate the advantages of

the proposed method. In all experiments, we set parameters

as lZ100, agedeadZ100, and cZ1. For GNG and GNG-U,

the maximum number of nodes is predefined as 300;
Fig. 2. 2D artificial data set used for the experiment.



Fig. 3. Randomly input samples from a stationary environment. GNG

results: 1 cluster.

Fig. 5. Randomly input samples from a stationary environment. Results of

proposed method: second layer, five clusters.
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the parameter sets in (Fritzke, 1995) and (Fritzke, 1997) are

adopted for other parameters.
3.1.1. Experiment in a stationary environment

First, we use Fig. 2 as a stationary data set to compare our

algorithm with GNG; 100,000 patterns are chosen randomly

from areas A, B, C, D, and E. Topological results of GNG

and the proposed method are shown in Figs. 3–5. For

stationary data, GNG can represent the topological

structure, but it is affected by noise and all nodes are linked

to form one cluster (Fig. 3). The first-layer of the proposed

method partially eliminates the influence of noise and

separates original data set to some different clusters (Fig. 4).

The second layer of the proposed method efficiently

represents the topology structure and gives the number of

clusters and typical prototype nodes of every cluster (Fig. 5)

.

3.1.2. Experiment in non-stationary environment

We simulate on-line learning through the use of the

following paradigm: from step 1 to 20,000, patterns are

chosen randomly from area A. At step 20,001, the
Fig. 4. Randomly input samples from a stationary environment. Results of

proposed method: first layer, three clusters.
environment changes and patterns from area B are chosen.

At step 40,001 the environment changes again, etc. Table 1

details specifications of the test environments. The environ-

ment changes from I to VII. In each environment, areas used

to generate patterns are marked as ‘1’; other areas are marked

as ‘0.’ For each environment, we add 10% noise to test data

and noise is distributed over the whole data space.

Before we test our proposed algorithm, we use GNG and

GNG-U to conduct this experiment. We show the last results

for GNG and GNG-U in Figs. 6 and 7, and do not report

intermediate results. These results show that GNG cannot

represent the topological structure of non-stationary on-line

data well. GNG-U deletes all old learned patterns and only

represents the structure of new input patterns. Neither

method eliminates noise. In GNG-U results, for example,

nodes beyond area E3 are all attributable to noise distributed

over the whole space (Fig. 7).

Fig. 8 shows the first-layer results of the proposed method.

After learning in one environment, we report intermediate

topological structures. Environments I and II test isotropic

data sets A and B, and an overlap exists between A and B. In

environment I, the data set of the 2-D Gaussian distribution is

tested. This system represents the Gaussian distribution

structure very well. In environment II from 20,001 to 40,000

steps, probability changes to zero in area A. Remaining

nodes of area A, often called ‘dead nodes,’ play a major role

in on-line or life-long learning. They preserve the knowledge
Table 1

Experiment environments for on-line learning

Area Environment

I II III IV V VI VII

A 1 0 1 0 0 0 0

B 0 1 0 1 0 0 0

C 0 0 1 0 0 1 0

D 0 0 0 1 1 0 0

E1 0 0 0 0 1 0 0

E2 0 0 0 0 0 1 0

E3 0 0 0 0 0 0 1



Fig. 6. Sequentially input samples from non-stationary environments. GNG

results.
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of previous situations for future decisions. In environment

III, 40,001 to 60,000 steps, the reappearance of area A does

not raise error and knowledge is preserved completely.

Therefore, nearly no insertion happens and most nodes

remain at their original positions. Environments III and IV

test a difficult situation (data sets such as area C and area D).

The system works well, removing noise between areas and

separating C and D. Environments V, VI, and VII test a

complicated artificial shape (area E). E is separated into three

parts and data come to the system sequentially, not

randomly. We find nodes of area E increasing following

the change of environment from V to VI and VII, but all

nodes are linked to form the same class.

Fig. 8 is used as the input data set of the second layer and

a constant similarity threshold based on Fig. 8 is calculated.

Fig. 9 is the result of the second layer. It reports the number

of clusters and gives prototype nodes of every cluster.

Figs. 4 and 8 show that the first layer of the proposed

method processes stationary and non-stationary environ-

ments well. It detects the main structure from original data,

which is polluted by noise. It controls the number of nodes

needed for the current task. However, some nodes generated
Fig. 7. Sequentially input samples from non-stationary environments.

GNG-U results.
by noise remain in results of the first layer, and the nodes are

too many to represent the topology structure efficiently.

Figs. 5 and 9 show that the second layer not only removes

those nodes caused by noise; it also removes some

redundant nodes and rearranges the position of nodes to

represent the topology structure efficiently. We say that,

using the second layer, the system can ‘understand’ original

raw input data very well.

Fig. 10 shows how the number of nodes changes during

on-line learning (first-layer). The number of nodes increases

when an input signal comes from a new area (see Table 1,

environment changes from I to VII). In the same

environment, after some learning steps, the increase in

nodes stops and the number of nodes converges to a constant

because further insertion cannot engender decreased error.

Noise leads the system to frequently insert and delete nodes.

For that reason, a small fluctuation exists in the number of

nodes in Fig. 10.

Finally, we perform some experiments to test the

sensitivity of parameters. Four different parameter sets for

{a1,a2,a3,b,g} are used to test the artificial data set (Fig. 2):

{1/4, 1/4, 1/4, 2/3, 3/4}, {1/4, 1/4, 1/4, 2/3, 1/2}, {1/6, 1/4,

1/4, 1/2, 1/2} and {1/6, 1/4, 1/4, 1/4, 3/4}. The experiments

are done in stationary and non-stationary environments. In

both environments, for all four parameter sets, the system

can detect the five clusters from the original data set and

give prototype nodes; the last results are nearly the same as

those shown in Fig. 5 for a stationary environment and those

shown in Fig. 9 for a non-stationary environment.

Consequently, the experiment results indicate that the

choice of parameter set {a1,a2,a3,b,g} is not influential.

In the following, we only use the original parameter set

{1/6, 1/4, 1/4, 2/3, 3/4} to do different real-world

experiments and to check whether or not the same parameter

set is suitable to different tasks.

3.2. Real-world data set

Two real-world data sets are used to test the proposed

method. For clustering, 10 classes are taken from ATT_

FACE image database to train the proposed network system.

For topology learning, we do vector quantization (VQ) for

Lena (512!512!256) and Boat (512!512!256) to test if

the proposed method can represent the topological structure

well. In both experiments, we compare the proposed method

with typical incremental networks GNG and GNG-U.

3.2.1. Test performance of clustering: application of face

recognition

For application of clustering with the proposed method,

we use some facial images as the input signal of the

first layer. The input facial images are taken from the

ATT_FACE database (http://www.uk.research.att.com/).

The database comprises 40 distinct subjects with 10

different images of every subject. For some subjects, the

images were taken at different times with various lighting,

http://www.elsevier.com/locate/neunet


Fig. 8. Sequentially input samples from non-stationary environments. Results of the proposed method: first layer.

S. Furao, O. Hasegawa / Neural Networks 19 (2006) 90–106 99



Fig. 9. Sequentially input samples from non-stationary environments.

Results of the proposed method: second layer, five clusters.
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facial expressions (open/closed eyes, smiling/not smiling)

and facial details (glasses/no glasses). The size of each

image is 92!112 pixels, with 256 grey levels per pixel. We

selected 10 subjects (Fig. 11(a)) from the database to test

proposed network system. Fig. 11(b) portrays the different

images of the first subject in Fig. 11(a). Feature vectors of

such images are taken as follows: first, the original image

with size 92!112 is re-sampled to 23!28 image using the

nearest neighbor interpolation method. Then Gaussian

smoothing is used to smooth the 23!28 image with

Gaussian widthZ4, sZ2 to obtain the 23!28 dimensional

input feature vectors (Fig. 12).

The test consists of two processes: learning and

evaluation. During learning, we choose vectors randomly

(stationary) or sequentially (more difficult task, non-

stationary on-line) from an original image vector set for

the first layer, then input the results of the first layer to the

second layer, and report number of clusters and prototype

vectors of every cluster as the results of the second layer. In

both layers, we set parameters lZ25 and agedeadZ25. In

the first layer, c is set to 1.0 because we want to delete nodes

lying in overlap area; for the second layer, c is set as 0.05 to
Fig. 10. Number of nodes during on-line learning (Environment I–

Environment VII).
focus on clustering and to avoid deleting too many nodes.

For both stationary and non-stationary environments, we do

10,000 training iterations for the first layer and 2000 training

iterations for the second layer.

In the evaluation process, nearest neighbor is used to

classify vectors in the original image vector set to the

clusters learned through the learning process. The correct

recognition ratio is reported as the performance index of

learning process.

For a stationary environment, i.e. vectors are randomly

chosen from the original data set, the learning process reports

that 10 clusters exist in the input patterns and gives prototype

vectors of every cluster. The evaluation process reports that

the correct recognition ratio is 90%. In addition, GNG is tested

with parameter lZ25 and amaxZ25, maximum number of

nodes is predefined as 50, other parameters are the same as in

Fritzke (1995), and 10,000 samples are used to train GNG. The

GNG results show four clusters in the original data set.

Consequently, GNG is unsuitable for this task.

For a non-stationary on-line environment, i.e. 10,000

vectors are sequentially taken from original data set (one

class by one class, 1000 samples for each class), the learning

process reports 10 clusters and gives prototype vectors of

every cluster (Fig. 13). Comparison of Fig. 13 with Fig. 12

reveals that the proposed algorithm reports the number of

clusters correctly. It gives the prototype vectors of every

cluster reasonably. The evaluation process reports that the

correct recognition ratio is 86%. Furthermore, GNG-U is

tested with parameter lZ25 and amaxZ25. The maximum

number of nodes is predefined as 25 and other parameters

are the same as in (Fritzke, 1997); 10,000 samples are input

sequentially to GNG-U (one class by one class, 1000

samples for each class). The GNG-U results show two

clusters in the original data set. That result indicates that

GNG-U is unsuitable for this task.

The experimental results show that the proposed method

works well for unsupervised classification (learning the

number of clusters and reporting prototype vectors of every

cluster). Some other typical incremental networks (such as

GNG, GNG-U) are unsuitable for this task.
3.2.2. Test performance of topology learning: application of

vector quantization

One goal of competitive learning systems is the

minimization of distortion error. Vector quantization (VQ)

(Linde et al., 1980) is a typical application in which error

minimization is important. In vector quantization, data are

transmitted over limited bandwidth channels by transmit-

ting, for each data vector, only the index of the nearest

reference vector. The set of reference vectors, the so-called

codebook, is assumed to be known both to the sender and

receiver. Therefore, the receiver can use the transmitted

indexes to reconstruct an original vector with the

corresponding reference vector. Information loss occurs

because of the difference of the current data vector and



Fig. 11. Facial image (a) 10 subjects, (b) 10 images of subject one.

Fig. 12. Feature vector (a) vector of Fig. 11(a), (b) vector of Fig. 11(b).
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Fig. 13. Sequentially input samples from a non-stationary environment.

Results of proposed method: 10 clusters.
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the nearest reference vector. The main problem in VQ is

how to find a codebook such that the information loss is

small.

This experiment uses vector quantization to code a well-

known image: Lena (512!512!256). The proposed

algorithm is used to determine the codebook. Different

from traditional methods, the codebook size is not

predefined. Instead, it is determined by the algorithm itself.

Because GNG or GNG-U is unsuitable for sequential input

vectors, this experiment only compares the proposed

method with GNG in a stationary environment, i.e.

randomly input vectors from the original vector data set.

For a non-stationary on-line environment, we only report

results of the proposed method.

In image compression applications, the compression

ratio and the peak signal to noise ratio (PSNR) are often

used to evaluate the compression algorithm performance.

Here, we use bit per pixel (bpp) to measure the compression

ratio, and PSNR is defined as

PSNR Z 10 log10

2552

PN

iZ1

ðf ðiÞKgðiÞÞ2=N

(31)

where f(i) is the grey level of the original image, g(i) is the

grey level of the reconstructed image, and N is the total

number of pixels in the image. For VQ, with the same bpp,

higher PSNR means less information loss. Consequently,

the corresponding codebook is better.

In the experiment, first, original image Lena (Fig. 14) is

separated into non-overlapping image blocks of 4!4. These

blocks are input patterns (16 dimensional vectors) of the

first layer. In the first layer, parameter lZ50, agedeadZ50,

and cZ0 (for that we assume that all blocks are useful
Fig. 14. Original image of Lena (512!512!256), 8 bpp.



Fig. 15. Randomly input samples from stationary environment. Recon-

structed image of Fig. 14 the first-layer codebook with 130 nodes, 0.45 bpp,

PSNRZ30.79 dB.

Table 2

Comparison of the proposed method and GNG for Lena in stationary

environment

Number of nodes bpp PSNR

The first layer 130 0.45 30.79

GNG 130 0.45 29.98

The second layer 52 0.34 29.29

GNG 52 0.34 28.61
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and no block can be deleted as noise). From the original

input vector data set, 200,000 samples are taken randomly.

After we finish the learning of the first layer, we set the

nodes generated in the first layer as the codebook (first-layer

codebook) and find the index of the nearest reference vector

for all original vectors. Then we use such indexes and

reference vectors in the first-layer codebook to reconstruct
Fig. 16. Randomly input samples from a stationary environment.

Reconstructed image of Fig. 14 GNG codebook with 130 nodes,

0.45 bpp, PSNRZ29.98 dB.
the Lena image. Fig. 15 is the reconstructed image of the

first-layer codebook.

Then, we set the size of the first-layer codebook as the

predefined maximum number of nodes of GNG and use

GNG to learn the codebook. During learning, parameters

used by GNG are lZ50, amaxZ50. Other parameters are

identical to those in Fritzke (1995), and 200,000 samples are

processed. Fig. 16 depicts the reconstructed image of the

GNG codebook.

For the second layer, the first-layer codebook is set as the

input data set of the second layer. With the same parameter

set as the first layer, i.e. lZ50, agedeadZ50, and cZ0, 10,

000 samples are taken randomly from the first-layer

codebook to train the second layer. We obtain the second-

layer codebook and use this second-layer codebook to

encode and reconstruct the Lena image. With the size of

second-layer codebook, GNG is also used to obtain a

codebook. We use this GNG codebook to encode and

reconstruct the Lena image, and calculate the PSNR.

Table 2 summarizes a comparison of the proposed method

and GNG in a stationary environment. For both the first

layer and the second layer, with the same compression ratio,
Fig. 17. Sequentially input samples from a non-stationary environment.

Reconstructed image of Fig. 14 the first-layer codebook with 499 nodes,

0.56 bpp, PSNRZ32.91 dB.



Fig. 18. Sequentially input samples from a non-stationary environment.

Reconstructed image of Fig. 14 the second-layer codebook with 64 nodes,

0.375 bpp, PSNRZ29.66 dB.

Table 3

Comparison of the proposed method and GNG for Boat in stationary

environment

Number of nodes bpp PSNR

First layer 225 0.487 30.05

GNG 225 0.487 29.45

The second layer 62 0.375 28.13

GNG 62 0.375 27.59
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the proposed method obtains higher PSNR than GNG: the

proposed method provides a better codebook than GNG.

From experiments in Sections 3.1.2 and 3.2.1, we know

that GNG and GNG-U are unsuitable for an on-line non-

stationary environment. Therefore, we only test the proposed

method in an on-line non-stationary environment. The

original vector data set is separated into five subsets. These

subsets are input sequentially to the first layer, with 40,000

samples taken from each subset. The reconstructed results of
Fig. 19. Original image of Boat (512!512!256), 8 bpp.
the first layer (Fig. 17) and the second layer (Fig. 18) show

that the proposed method is useful to learn the codebook of

Lena well in an on-line non-stationary environment.

With the same parameter set as the Lena image, we also

compare the proposed method with GNG for another

well-known image-Boat (512!512!256) (Fig. 19)-in a

stationary environment. Table 3 shows the results: the

proposed method obtains a better codebook than GNG for

the Boat image. In the on-line non-stationary environment,

Fig. 20 is the reconstructed image of the first-layer

codebook, and Fig. 21 is the reconstructed image of the

second layer codebook. Both Lena and Boat experiments

show that, for topology learning, the proposed method

works well for stationary and non-stationary environments.
4. Conclusion

In this study, we proposed a new on-line learning method

for unsupervised classification and topology representation.

Using a similarity threshold-based and a locally accumu-

lated error-based insertion criterion, the system can grow
Fig. 20. Sequentially input samples from a non-stationary environment.

Reconstructed image of Fig. 19 the first-layer codebook with 557 nodes,

0.575 bpp, PSNRZ31.46 dB.



Fig. 21. Sequentially input samples from a non-stationary environment.

Reconstructed image of Fig. 19 the second-layer codebook with 81 nodes,

0.4 bpp, PSNRZ28.54 dB.
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incrementally and accommodate input patterns of on-line

non-stationary data distribution. A novel on-line criterion

for node removal in low probability-density regions enables

this system to separate clusters with low-density overlap and

to dynamically eliminate noise from input data. The utility

parameter ‘error-radius’ is used to judge if the insertion is

successful and to control the increase of nodes. Adoption of

a two-layer neural network makes it possible for this system

to ‘understand’ the original data set well. In summary, the

algorithm can cope with difficulties in online or life-long

unsupervised learning such as overlap, never-seen inputs,

temporarily non-appearing patterns, and noise.

Other problems remain unsolved. For example, when a

high-density overlap pertains between clusters, it is

extremely difficult for the proposed algorithm to separate

clusters from each other. Three parameters must be

determined by the user: l, agedead, and c. The difficulty of

automatically determining such parameters is based on the

fact that, for different tasks, the optimal choice of such

parameters is different: it is difficult to give a standard of

such parameters for every task. Although these parameters

are not so sensitive, we remain hopeful that some methods

are useful to automatically deduce optimal choice of such

parameters for the task. Such problems will be addressed in

subsequent studies.
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